Instability for Standing Waves of Nonlinear Klein-gordon Equations via Mountain-pass Arguments

نویسندگان

  • LOUIS JEANJEAN
  • STEFAN LE COZ
چکیده

We introduce mountain-pass type arguments in the context of orbital instability for Klein-Gordon equations. Our aim is to illustrate on two examples how these arguments can be useful to simplify proofs and derive new results of orbital stability/instability. For a power-type nonlinearity, we prove that the ground states of the associated stationary equation are minimizers of the functional action on a wide variety of constraints. For a general nonlinearity, we extend to the dimension N = 2 the classical instability result for stationary solutions of nonlinear Klein-Gordon equations proved in 1985 by Shatah in dimension N > 3.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong Instability of Standing Waves for Nonlinear Klein-gordon Equations

The strong instability of ground state standing wave solutions eφω(x) for nonlinear Klein-Gordon equations has been known only for the case ω = 0. In this paper we prove the strong instability for small frequency ω.

متن کامل

Strong instability of solitary waves for nonlinear Klein-Gordon equations and generalized Boussinesq equations

We study here instability problems of standing waves for the nonlinear Klein-Gordon equations and solitary waves for the generalized Boussinesq equations. It is shown that those special wave solutions may be strongly unstable by blowup in finite time, depending on the range of the wave’s frequency or the wave’s speed of propagation and on the nonlinearity.

متن کامل

Strong instability of standing waves for nonlinear Klein-Gordon equation and Klein-Gordon-Zakharov system

The orbital instability of ground state standing waves eφω(x) for the nonlinear Klein-Gordon equation has been known in the domain of all frequencies ω for the supercritical case and for frequencies strictly less than a critical frequency ωc in the subcritical case. We prove the strong instability of ground state standing waves for the entire domain above. For the case when the frequency is equ...

متن کامل

On the Stability of Standing Waves of Klein-gordon Equations in a Semiclassical Regime

We investigate the orbital stability and instability of standing waves for two classes of Klein-Gordon equations in the semi-classical regime.

متن کامل

Strong instability of solitary waves for nonlinear Klein–Gordon equations and generalized Boussinesq equations Instabilité forte d’ondes solitaires pour des équations de Klein–Gordon non linéaires et des équations généralisées de Boussinesq

We study here instability problems of standing waves for the nonlinear Klein–Gordon equations and solitary waves for the generalized Boussinesq equations. It is shown that those special wave solutions may be strongly unstable by blowup in finite time, depending on the range of the wave’s frequency or the wave’s speed of propagation and on the nonlinearity. © 2006 Elsevier Masson SAS. All rights...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008